

Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences

Al for Laser Micromachining

S. Walker¹, D. Brinkmeier², T. Menold², A. Michalowski² and B. Neuenschwander¹

Institute for Applied Laser, Photonics and Surface Technologies ALPS

Outline

Motivation

- Bayesian Optimization
- **Examples**:
 - High Throughput Maching with a 2 Step Process
 - Steel surfaces
- Summary and Conclusion

Motivation

Si (100), 10 ps: Energy Specific Volume and Roughness

Si (100), 10 ps: Energy Specific Volume and Roughness

Si (100), 10 ps: Transition Region (Former Experiments)

Ge (100), 10 ps: Energy Specific Volume and Roughness

Identical behavior for the surface roughness for Germanium.

Ge (100), 10 ps: Bursts

Higher removal rates with bursts

- Identical behavior of the surface roughness
- But increasing surface roughness with bursts.

Idea for a 2-Step Process: Roughening - Smoothening

- 1. Step: Roughing
 - High removal rate with bursts
 - Rough surface
- 2. Step: Smoothening
 - Smoothening with single pulses with fluence above the transition
- To optimize: s_a (min), dV/dt (max)
- Parameters which can be varied:
 - **•** Roughing: n_{burst} , ϕ_0 , w_0 , p_x , p_y , f_{rep} , n_{layer}
 - Smoothening: $\phi_0, w_0, p_x, p_y, f_{rep}, n_{layer}$
 - For only 5 values per parameter $\approx 1.2 \cdot 10^9$ Experiments

Idea for a 2-Step Process: Roughening - Smoothening

- 1. Step: Roughing
 - High removal rate with bursts
 - Rough surface
- 2. Step: Smoothening
 - Smoothening with single pulses with fluence above the transition
- To optimize: s_a (min), dV/dt (max)
- Parameters which can be varied:
 - Roughing: n_{burst} , ϕ_0 , w_0 , p_x , p_y , f_{rep} , n_{layer}
 - Smoothening: $\phi_0, w_0, p_x, p_y, f_{rep}, n_{layer}$
 - For only 5 values per parameter $\approx 1.2 \cdot 10^9$ Experiments
 - **Even** when we reduce $\approx 3'125$ Experiments
 - Can machine learning (ML) help?

Process Optimization by Bayesian Optimization

Parameter Set \vec{P}

- > n_b : #Pulses per Burst
- $\phi_{0,r}$: Peak Fluence of a Single Pulse
- *n_{l,r}*: #Layer roughening
- $\phi_{0,s}$: Peak Fluence of a Single Pulse
- n_{l,s}: #Layer smoothening
- ▶ $p_{x,s}$: Pulse-pulse distance smoothening
- > $p_{y,s}$: Line-line distance smoothening

▶ etc.

Optimization Target

- ► *s_a*: Surface roughness
- dV/dt: Removal rate directly scales with the average depth per layer t
- Define scalar cost Function: $cf(\vec{P}) = f(s_a(\vec{P}), t(\vec{P}))$

• Goal: Approximate $cf(\vec{P})$ and find it's minimum value.

- ▶ No data available about *cf*(*P*).
- Take a set out from the infinite space of functions (Gaussian process).

- ▶ No data available about *cf*(*P*).
- Take a set out from the infinite space of functions (Gaussian process).
- A first measured value cf(P₁) restricts the number of possible functions.

- ▶ No data available about *cf*(*P*).
- Take a set out from the infinite space of functions (Gaussian process).
- A first measured value cf(P₁) restricts the number of possible functions.
- Each additional point further limits these functions.

- ▶ No data available about *cf*(*P*).
- Take a set out from the infinite space of functions (Gaussian process).
- A first measured value cf(P₁) restricts the number of possible functions.
- Each additional point further limits these functions.

- ▶ No data available about *cf*(*P*).
- Take a set out from the infinite space of functions (Gaussian process).
- A first measured value cf(P₁) restricts the number of possible functions.
- Each additional point further limits these functions.

- ► No data available about *cf*(*P*).
- Take a set out from the infinite space of functions (Gaussian process).
- A first measured value cf(P₁) restricts the number of possible functions.
- Each additional point further limits these functions.
- Uncertainty for cf(P) between the measured points.

- ► No data available about *cf*(*P*).
- Take a set out from the infinite space of functions (Gaussian process).
- A first measured value cf(P₁) restricts the number of possible functions.
- Each additional point further limits these functions.
- Uncertainty for cf(P) between the measured points.
- Describe with predicted mean and confidence region.

- ► No data available about *cf*(*P*).
- Take a set out from the infinite space of functions (Gaussian process).
- A first measured value cf(P₁) restricts the number of possible functions.
- Each additional point further limits these functions.
- Uncertainty for cf(P) between the measured points.
- Describe with predicted mean and confidence region.
- Uncertainty of measured values.

Note: The model function was self-learned, it is not a polynomial

Bern University of Applied Sciences | ALPS or spline or something like that!

Slides from A. Michalowski ifsw

The acquisition function determines the P with most expected information.

Bern University of Applied Sciences | ALPS

Slides from A. Michalowski ifsw

The acquisition function determines the P with most expected information.

Bern University of Applied Sciences | ALPS

Slides from A. Michalowski ifsw

- The acquisition function determines the P with most expected information.
- After e few steps cf(P) can be approximated in demanded precision to estimate
 - $\blacktriangleright cf_{min}(P)$
 - $\triangleright P_{opt}$
- > This method can be extended to multi-dimensional parameter space \vec{P}

Fixed Parameters:

- ► $f_{rep} = 200 \ kHz$
- ► $w_0 = 14 \, \mu m$
- ► $p_x = p_y = 7 \ \mu m$
- $\blacktriangleright \Delta \tau = 10 \ ps$
- $\triangleright \ \lambda = 1064 \ nm$
- \blacktriangleright N_{rough,smooth} = 1
- No autotracking of the focal position

Varied Parameters:

*n*_{burst,rough} = 1, 2, ... 8
0.17 J/cm² ≤ φ_{0,rough} ≤ 6 J/cm²
0.17 J/cm² ≤ φ_{0,smooth} ≤ 6 J/cm²

- Start with arbitrary set of parameters.
- Calculate cf and next set of parameters by Bayesian optimization
- Stop after 40 experiments.

- Machine a square with a side length of s = 1.0 mm with a set of parameter for roughing and smoothening.
- Measure surface topography with a laser scanning microscope.

- Machine a square with a side length of s = 1.0 mm with a set of parameter for roughing and smoothening.
- Measure surface topography with a laser scanning microscope.
- Deduce the step height and with this the average removal depth t per layer.

- Machine a square with a side length of s = 1.0 mm with a set of parameter for roughing and smoothening.
- Measure surface topography with a laser scanning microscope.
- Deduce the step height and with this the average removal depth t per layer.
- Deduce the value of the surface roughness s_a in a selected machined area.

- Machine a square with a side length of *l* = 1.0 mm with a set of parameter for roughing and smoothening.
- Measure surface topography with a laser scanning microscope.
- Deduce the step height and with this the average removal depth t per layer.
- Deduce the value of the surface roughness s_a in a selected machined area.
- Calculate in this selected area the standard deviation σ of the measured heights.

File: ge_34.tiff, numHoles > 9 = 8, img_STD = 29.74

- Machine a square with a side length of *l* = 1.0 mm with a set of parameter for roughing and smoothening.
- Measure surface topography with a laser scanning microscope.
- Deduce the step height and with this the average removal depth t per layer.
- Deduce the value of the surface roughness s_a in a selected machined area.
- Calculate in this selected area the standard deviation σ of the measured heights.
- Deduce the number of holes N in the selected area with image processing.

- Machine a square with a side length of *l* = 1.0 mm with a set of parameter for roughing and smoothening.
- Measure surface topography with a laser scanning microscope.
- Deduce the step height and with this the average removal depth *t* per layer.
- Deduce the value of the surface roughness s_a in a selected machined area.
- Calculate in this selected area the standard deviation σ of the measured heights.
- Deduce the number of holes *N* in the selected area with image processing.

Cost function:

$$cf = w_{s_a}(s_a) \cdot s_a - w_t \cdot t + w_\sigma \cdot \sigma + w_N \cdot N$$

- Machine a square with a side length of *l* = 1.0 mm with a set of parameter for roughing and smoothening.
- Measure surface topography with a laser scanning microscope.
- Deduce the step height and with this the average removal depth *t* per layer.
- Deduce the value of the surface roughness s_a in a selected machined area.
- Calculate in this selected area the standard deviation σ of the measured heights.
- Deduce the number of holes *N* in the selected area with image processing.
- Calculate the value of the cost function

- Lowest value after 20 experiments.
- Additional 20 experiments no further improvement.
- Best parameters:
 - \triangleright $n_{burst,rough} = 3$
 - $\blacktriangleright \phi_{0,rough} = 2.33 \frac{J}{cm^2}$
 - $\blacktriangleright \phi_{0,smooth} = 6 \frac{J}{cm^2}$
 - \triangleright $n_{layer,rough} = 5$
 - \blacktriangleright $n_{layer,smooth} = 13$
- Results

►
$$s_a = 390 \ nm, \ t = 1.79 \ \mu m \rightarrow \frac{dV}{dt} = 1.05 \ \frac{mm^3}{min}$$

Example: Steel Surfaces

Smart Laser Micromachining Platform - Scheme

Parameter Set \vec{P}

- ▶ $\phi_{0,SP}$: Peak Fluence of a Single Pulse
- *n_b*: #Pulses per Burst
- ▶ *o*: Overlap
- ▶ r: Random
- f_r : Repetition rate
- *E_{P,b}*: "burst dynamics"
- $\Delta \tau$: Pulse duration
- ▶ w₀: Spot size

Goal: Autonomously find minimum of cf

Optimization Target

- *s_a*: Surface roughness
- Define cost Function: $cf = s_a$ $+Penalty(d < 2 \mu m)$ +Penalty(Bad regions)

Model Learning from Data

Learning models from data with AISI 304 Gaussian processes are employed to learn models from data.

Learned models for the roughness in laser-micromachining:

ML Based Optimization on AISI 420 with Agile fs System

Material: Steel AISI 420 (1.2083) Laser source: NKT/CSEM Number of samples: 110 Optimization method: AI based

ABLATION	Sample 48	Sample 50	Sample 52		
Best roughness value s_a / μm	0,294	0,292	0,139		
Pitch $p_x = p_y / \mu m$	5,6	8	8		
Random / µm	1,4	2	2		
n _{slices}	200	200	200		
f_r / kHz	2000	2000	2000		
$\phi_{0,SP}$ / J/cm ²	0,510	1,706	0,153		
n_b	2	2	2		
w ₀ / μm	10,7	12,4	12,4		
$\Delta \tau$ / ps	2ps	350fs	2ps		

ML Based Optimization on AISI 420 with Agile fs System

Material: Steel AISI 420 (1.2083) Laser source: NKT/CSEM Number of samples: 110 Optimization method: AI based

ABLATION	Sample 52
Best roughness value s_a / μm	0,139
Pitch $p_x = p_y / \mu m$	8
Random / µm	2
n _{slices}	200
f_r / kHz	2000
$\phi_{0,SP}$ / J/cm ²	0,153
n_b	2
w ₀ / μm	12,4
$\Delta \tau / ps$	2ps

2000X 500X Take care of your sensors BEH T Signal A = SE2 Reference Mag = Out Dev. $WD = 8.0 m_{\odot}$ ference Mag = Out Dev. Josef Zürcher WD = 6.0 mmMag = 2.00 KX Josef Zurche $Mac = -500 \, \lambda$ EHT = 7.00 kV Signal A = SE2

Reference Mag = Out Day.

WD = 8.0 m

And = 5 OUK X

Josef Zürcher

WD = 8.0 mm

Mag = 20.00 K X Reference Mag = Out Dev.

Josef Zürcher

Summary / Outlook

- We demonstrated the efficient optimization of a two-step process (roughening smoothening) with Bayesian optimization.
- This method represents a powerful tool for a tremendous reduction of the demanded number of experiments and can be automized.
- ▶ For Ge a good set of parameter was found after 40 experiments instead of ≈ 1000 for a systematic study.
- But take care
 - > The definition of the cost function uses detailed knowledge about the goals.
 - Use adequate sensors.