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Si (100), 10 ps: Energy Specific Volume and Roughness
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Si (100): Energy Specific Volume, Dt = 10 ps
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Si (100), 10 ps: Transition Region (Former Experiments)
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A melt film seems to be responsible for the smoother 

surface at higher peak fluences.

Fostered by calorimetric experiments
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Ge (100), 10 ps: Energy Specific Volume and Roughness
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 Identical behavior for the surface roughness for Germanium.
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Ge (100), 10 ps: Bursts
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 Identical behavior of the surface roughness

 But increasing surface roughness with bursts.

 Higher removal rates with bursts



Bern University of Applied Sciences | ALPS

 1. Step: Roughing

 High removal rate with bursts

 Rough surface

 2. Step: Smoothening

 Smoothening with single pulses with fluence 

above the transition

 To optimize: 𝑠𝑎 (min), 𝑑𝑉/𝑑𝑡 (max)

 Parameters which can be varied:

 Roughing: 𝑛𝑏𝑢𝑟𝑠𝑡, 𝜙0, 𝑤0, 𝑝𝑥, 𝑝𝑦 , 𝑓𝑟𝑒𝑝, 𝑛𝑙𝑎𝑦𝑒𝑟

 Smoothening: 𝜙0, 𝑤0, 𝑝𝑥, 𝑝𝑦 , 𝑓𝑟𝑒𝑝, 𝑛𝑙𝑎𝑦𝑒𝑟

 For only 5 values per parameter 

≈ 1.2 ⋅ 109
Experiments

Idea for a 2-Step Process: Roughening - Smoothening
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 1. Step: Roughing

 High removal rate with bursts

 Rough surface

 2. Step: Smoothening

 Smoothening with single pulses with fluence 

above the transition

 To optimize: 𝑠𝑎 (min), 𝑑𝑉/𝑑𝑡 (max)

 Parameters which can be varied:

 Roughing: 𝑛𝑏𝑢𝑟𝑠𝑡, 𝜙0, 𝑤0, 𝑝𝑥, 𝑝𝑦 , 𝑓𝑟𝑒𝑝, 𝑛𝑙𝑎𝑦𝑒𝑟

 Smoothening: 𝜙0, 𝑤0, 𝑝𝑥, 𝑝𝑦 , 𝑓𝑟𝑒𝑝, 𝑛𝑙𝑎𝑦𝑒𝑟

 For only 5 values per parameter 

≈ 1.2 ⋅ 109
Experiments

 Even when we reduce ≈ 3′125 Experiments

 Can machine learning (ML) help?

Idea for a 2-Step Process: Roughening - Smoothening



 Bayesian Optimization
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Parameter Set 𝑃 Optimization Target

Process Optimization by Bayesian Optimization

 𝑛𝑏: #Pulses per Burst

 𝜙0,𝑟: Peak Fluence of a Single Pulse

 𝑛𝑙,𝑟: #Layer roughening

 𝜙0,𝑠: Peak Fluence of a Single Pulse 

 𝑛𝑙,𝑠: #Layer smoothening

 𝑝𝑥,𝑠: Pulse-pulse distance smoothening

 𝑝𝑦,𝑠: Line-line distance smoothening

 etc.

 𝑠𝑎: Surface roughness

 Τ𝑑𝑉 𝑑𝑡: Removal rate 

directly scales with the average depth per 

layer 𝑡

 Define scalar cost Function:

𝑐𝑓(𝑃) = 𝑓(𝑠𝑎(𝑃), 𝑡(𝑃))

▶ Goal: Approximate 𝒄𝒇(𝑷) and find it’s minimum value. 
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 No data available about 𝑐𝑓(𝑃).

 Take a set out from the infinite space 

of functions (Gaussian process).

Gaussian Processes

𝑃

𝑐𝑓
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 No data available about 𝑐𝑓(𝑃).

 Take a set out from the infinite space 

of functions (Gaussian process).

 A first measured value 𝑐𝑓(𝑃1) restricts 

the number of possible functions.

Gaussian Processes
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 No data available about 𝑐𝑓(𝑃).

 Take a set out from the infinite space 

of functions (Gaussian process).

 A first measured value 𝑐𝑓(𝑃1) restricts 

the number of possible functions.

 Each additional point further limits 

these functions.
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 No data available about 𝑐𝑓(𝑃).

 Take a set out from the infinite space 

of functions (Gaussian process).

 A first measured value 𝑐𝑓(𝑃1) restricts 

the number of possible functions.

 Each additional point further limits 

these functions. 
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 No data available about 𝑐𝑓(𝑃).

 Take a set out from the infinite space 

of functions (Gaussian process).

 A first measured value 𝑐𝑓(𝑃1) restricts 

the number of possible functions.
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these functions.
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 No data available about 𝑐𝑓(𝑃).

 Take a set out from the infinite space 

of functions (Gaussian process).

 A first measured value 𝑐𝑓(𝑃1) restricts 

the number of possible functions.

 Each additional point further limits 

these functions.

 Uncertainty for 𝑐𝑓(𝑃) between the 

measured points.

Gaussian Processes

Superposition of 100 samples

𝑃

𝑐𝑓
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 No data available about 𝑐𝑓(𝑃).

 Take a set out from the infinite space 

of functions (Gaussian process).

 A first measured value 𝑐𝑓(𝑃1) restricts 

the number of possible functions.

 Each additional point further limits 

these functions.

 Uncertainty for 𝑐𝑓(𝑃) between the 

measured points.

 Describe with predicted mean and 

confidence region.

Gaussian Processes

𝑃
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 No data available about 𝑐𝑓(𝑃).

 Take a set out from the infinite space 

of functions (Gaussian process).

 A first measured value 𝑐𝑓(𝑃1) restricts 

the number of possible functions.

 Each additional point further limits 

these functions.

 Uncertainty for 𝑐𝑓(𝑃) between the 

measured points.

 Describe with predicted mean and 

confidence region.

 Uncertainty of measured values.

Gaussian Processes

Note: The model function was self-learned, it is not a polynomial 

or spline or something like that! 

𝑃

𝑐𝑓
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 The acquisition function determines 

the 𝑃 with most expected information.

Bayesian Optimization

𝑃

𝑐𝑓
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 The acquisition function determines 

the 𝑃 with most expected information.

 After e few steps 𝑐𝑓 𝑃 can be 

approximated in demanded precision 

to estimate

 𝑐𝑓𝑚𝑖𝑛(𝑃)

 𝑃𝑜𝑝𝑡

 This method can be extended to 

multi-dimensional parameter space 𝑃

Bayesian Optimization

𝑃

𝑐𝑓

𝑐𝑓𝑚𝑖𝑛

𝑃𝑜𝑝𝑡
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 Example Ge
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Fixed Parameters: Varied Parameters:

Experimental Procedure

 𝑓𝑟𝑒𝑝 = 200 𝑘𝐻𝑧

 𝑤0 = 14 𝜇𝑚

 𝑝𝑥 = 𝑝𝑦 = 7 𝜇𝑚

 Δ𝜏 = 10 𝑝𝑠

 𝜆 = 1064 𝑛𝑚

 𝑁𝑟𝑜𝑢𝑔ℎ,𝑠𝑚𝑜𝑜𝑡ℎ = 1

 No autotracking of the focal position

 𝑛𝑏𝑢𝑟𝑠𝑡,𝑟𝑜𝑢𝑔ℎ = 1, 2, … 8

 0.17
𝐽

𝑐𝑚2 ≤ 𝜙0,𝑟𝑜𝑢𝑔ℎ ≤ 6
𝐽

𝑐𝑚2

 0.17
𝐽

𝑐𝑚2 ≤ 𝜙0,𝑠𝑚𝑜𝑜𝑡ℎ ≤ 6
𝐽

𝑐𝑚2

 𝑛𝑙𝑎𝑦𝑒𝑟,𝑟𝑜𝑢𝑔ℎ = 1, 2, … 10

 𝑛𝑙𝑎𝑦𝑒𝑟,𝑠𝑚𝑜𝑜𝑡ℎ = 5, 6, … 25

 Start with arbitrary set of parameters.

 Calculate 𝑐𝑓 and next set of parameters 

by Bayesian optimization

 Stop after 40 experiments.
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 Machine a square with a side length of

𝑠 = 1.0 𝑚𝑚 with a set of parameter for 

roughing and smoothening.

 Measure surface topography with a laser 

scanning microscope.

Experimental Procedure
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 Machine a square with a side length of

𝑠 = 1.0 𝑚𝑚 with a set of parameter for 

roughing and smoothening.

 Measure surface topography with a laser 

scanning microscope.

 Deduce the step height and with this the 

average removal depth 𝑡 per layer.

Experimental Procedure
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 Machine a square with a side length of

𝑠 = 1.0 𝑚𝑚 with a set of parameter for 

roughing and smoothening.

 Measure surface topography with a laser 

scanning microscope.

 Deduce the step height and with this the 

average removal depth 𝑡 per layer.

 Deduce the value of the surface 

roughness 𝑠𝑎 in a selected machined area.

Experimental Procedure
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 Machine a square with a side length of

ℓ = 1.0 𝑚𝑚 with a set of parameter for 

roughing and smoothening.

 Measure surface topography with a laser 

scanning microscope.

 Deduce the step height and with this the 

average removal depth 𝑡 per layer.

 Deduce the value of the surface 

roughness 𝑠𝑎 in a selected machined area.

 Calculate in this selected area the 

standard deviation 𝜎 of the measured 

heights.

Experimental Procedure
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 Measure surface topography with a laser 

scanning microscope.

 Deduce the step height and with this the 

average removal depth 𝑡 per layer.

 Deduce the value of the surface 

roughness 𝑠𝑎 in a selected machined area.

 Calculate in this selected area the 

standard deviation 𝜎 of the measured 

heights.

 Deduce the number of holes 𝑁 in the 

selected area with image processing.

Experimental Procedure



Bern University of Applied Sciences | ALPS

 Machine a square with a side length of

ℓ = 1.0 𝑚𝑚 with a set of parameter for 

roughing and smoothening.

 Measure surface topography with a laser 

scanning microscope.

 Deduce the step height and with this the 

average removal depth 𝒕 per layer.

 Deduce the value of the surface 

roughness 𝒔𝒂 in a selected machined area.

 Calculate in this selected area the 

standard deviation 𝝈 of the measured 

heights.

 Deduce the number of holes 𝑵 in the 

selected area with image processing.

Experimental Procedure
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 Machine a square with a side length of

ℓ = 1.0 𝑚𝑚 with a set of parameter for 

roughing and smoothening.

 Measure surface topography with a laser 

scanning microscope.

 Deduce the step height and with this the 

average removal depth 𝒕 per layer.

 Deduce the value of the surface 

roughness 𝒔𝒂 in a selected machined area.

 Calculate in this selected area the 

standard deviation 𝝈 of the measured 

heights.

 Deduce the number of holes 𝑵 in the 

selected area with image processing.

 Calculate the value of the cost function

Experimental Procedure

 Cost function:

𝑐𝑓 = 𝑤𝑠𝑎
𝑠𝑎 ⋅ 𝑠𝑎 − 𝑤𝑡 ⋅ 𝑡 + 𝑤𝜎 ⋅ 𝜎 + 𝑤𝑁 ⋅ 𝑁

𝑠𝑎

𝑤𝑠𝑎
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Ge: Bayesian Optimization
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Ge: Bayesian Optimization
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Bayesian Optimization  Lowest value after 20 experiments.

 Additional 20 experiments no further 

improvement.

 Best parameters:

 𝑛𝑏𝑢𝑟𝑠𝑡,𝑟𝑜𝑢𝑔ℎ = 3

 𝜙0,𝑟𝑜𝑢𝑔ℎ = 2.33
𝐽

𝑐𝑚2

 𝜙0,𝑠𝑚𝑜𝑜𝑡ℎ = 6
𝐽

𝑐𝑚2

 𝑛𝑙𝑎𝑦𝑒𝑟,𝑟𝑜𝑢𝑔ℎ = 5

 𝑛𝑙𝑎𝑦𝑒𝑟,𝑠𝑚𝑜𝑜𝑡ℎ = 13

 Results

 𝑠𝑎 = 390 𝑛𝑚, 𝑡 = 1.79 𝜇𝑚 →
dV

dt
= 1.05

mm3

min



 Example: Steel Surfaces
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Parameter Set 𝑃 Optimization Target

Smart Laser Micromachining Platform - Scheme

 𝜙0,𝑆𝑃: Peak Fluence of a Single Pulse

 𝑛𝑏: #Pulses per Burst 

 𝑜: Overlap

 𝑟: Random

 𝑓𝑟: Repetition rate

 𝐸𝑃,𝑏: "burst dynamics"

 Δ𝜏: Pulse duration

 𝑤0: Spot size

 𝑠𝑎: Surface roughness

 Define cost Function:

𝑐𝑓 = 𝑠𝑎

+𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑑 < 2 𝜇𝑚

+𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝐵𝑎𝑑 𝑟𝑒𝑔𝑖𝑜𝑛𝑠)

▶ Goal: Autonomously find minimum of 𝒄𝒇
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Model Learning from Data

 Learning models from data with AISI 304 

Gaussian processes are employed to learn models from data.

 Learned models for the roughness in laser-micromachining:
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ML Based Optimization on AISI 420 with Agile fs System

ABLATION Sample 48 Sample 50 Sample 52

Best roughness value 𝑠𝑎 / 𝜇𝑚 0,294 0,292 0,139

Pitch 𝑝𝑥 = 𝑝𝑦 / m 5,6 8 8

Random / 𝜇𝑚 1,4 2 2

𝑛𝑠𝑙𝑖𝑐𝑒𝑠 200 200 200

𝑓𝑟 / 𝑘𝐻𝑧 2000 2000 2000

𝜙0,𝑆𝑃 / 𝐽/𝑐𝑚2
0,510 1,706 0,153

𝑛𝑏 2 2 2

𝑤0 / 𝜇𝑚 10,7 12,4 12,4

Δ𝜏 / ps 2ps 350fs 2ps

Material: Steel AISI 420 (1.2083)

Laser source: NKT/CSEM

Number of samples: 110

Optimization method: AI based
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ML Based Optimization on AISI 420 with Agile fs System

ABLATION Sample 52

Best roughness value 𝑠𝑎 / 𝜇𝑚 0,139

Pitch 𝑝𝑥 = 𝑝𝑦 / m 8

Random / 𝜇𝑚 2

𝑛𝑠𝑙𝑖𝑐𝑒𝑠 200

𝑓𝑟 / 𝑘𝐻𝑧 2000

𝜙0,𝑆𝑃 / 𝐽/𝑐𝑚2
0,153

𝑛𝑏 2

𝑤0 / 𝜇𝑚 12,4

Δ𝜏 / ps 2ps

Material: Steel AISI 420 (1.2083)

Laser source: NKT/CSEM

Number of samples: 110

Optimization method: AI based
500X

5000X 20000X

2000X

Take care of your sensors
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 We demonstrated the efficient optimization of a two-step process (roughening –

smoothening) with Bayesian optimization.

 This method represents a powerful tool for a tremendous reduction of the demanded 

number of experiments and can be automized.

 For Ge a good set of parameter was found after 40 experiments instead of 

≈ 1000 for a systematic study.

 But take care

 The definition of the cost function uses detailed knowledge about the goals.

 Use adequate sensors.

Summary / Outlook
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