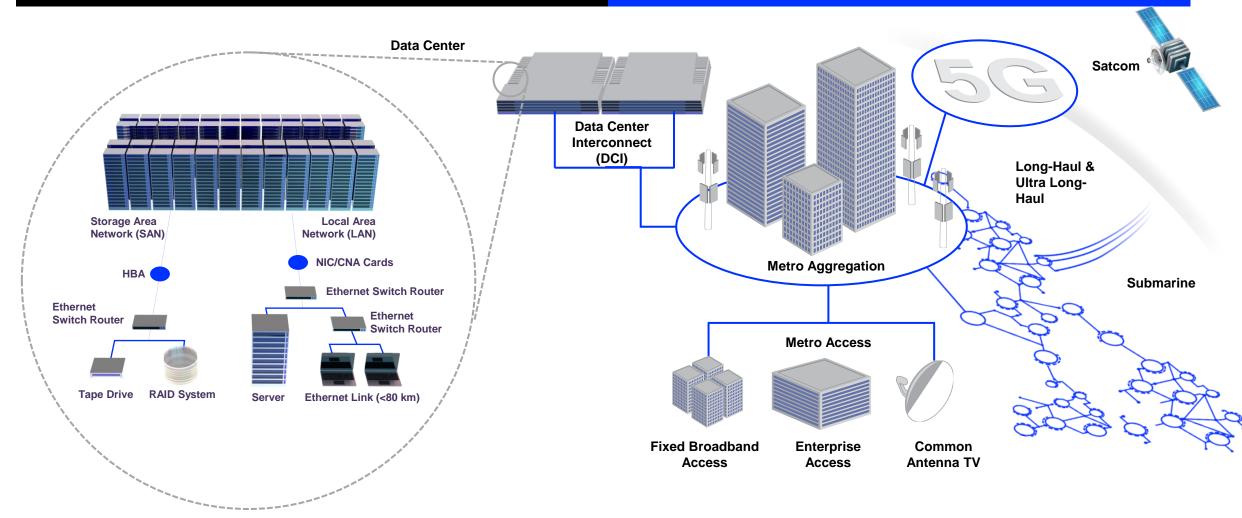
ADVANCES IN ELECTRO-OPTICAL COMPONENTS FOR DATA COMMUNICATIONS

6/21/2024

Anna Tatarczak Member of Technical Staff at the CTO Office

Copyright 2024, Coherent. All rights reserved.

- Definitions
- Standardization driven requirements
- Overview of Recent Advances in Electro-Optical Devices
 - Lasers
 - Modulators
 - Detectors
- New Developments in Pluggable Modules
 - Linear and Co-packaged Optics
- Benefits and challenges of PICs for optical communications


OPTICAL COMPONENTS FOR DATA AND TELE COMMUNICATIONS

DATACOM AND TELECOM DEFINITIONS

DATACOM

TELECOM

GROWTH DRIVERS FOR ELECTRO-OPTICAL COMPONENTS

DATACOM

TELECOM

- Datacom Growth Factors
 - AI/ML for Datacenters
 - Expansion of cloud services and applications
 - Need for enhanced network cybersecurity
 - Expect 800G/1.6T to dominate for next 5 years

- Telecom Growth Factors
 - 2.6 billion people not connected to the internet
 - 5G growth in developing economies & 6G emergence
 - Increasing internet demand in remote and rural areas
 - Growth of Internet of Things (IoT) devices

LASER TECHNOLOGIES FOR DATACOM AND TELECOM

Datacom Short-Reach < 100 m

8x100G for 800G 16x100G for 1.6T 8x200G for 1.6T

Gallium Arsenide

VCSEL

Datacom Mid- and Long-Reach 500 m to 10 km

8x100G for 800G 4x200G for 800G 8x200G for 1.6T

Indium Phosphide, Silicon Photonics


EML

CW Laser with Silicon Photonics modulator
DFB-MZ Telecom **10 km ++**

Coherent optics, multiple modulation formats (QPSK, QAM)

Indium Phosphide, Silicon Photonics

- Narrow linewidth laser
- IQ modulators
- Coherent mixer and photodiode array

Datacom transceiver R&D

in Fremont, CA

VCSEL: Vertical Cavity Surface-Emitting Laser EML: Electro-Absorption Modulated Laser CW: Continuous Wave DFB-MZ: Distributed Feedback Laser with Mach-Zehnder Modulator IQ: In-Phase/Quadrature

OPTICAL COMPONENTS

LASER TECHNOLOGIES FOR DATACOM AND TELECOM

Datacom Short-Reach < 100 m	Datacom Mid- and Long-Reach 500 m to 10 km	Telecom 10 km ++	
8x100G for 800G 16x100G for 1.6T 8x200G for 1.6T	8x100G for 800G 4x200G for 800G 8x200G for 1.6T	Coherent optics, multiple modulation formats (QPSK, QAM)	
Gallium Arsenide VCSEL 	Indium Phosphide, Silicon Photonics	Indium Phosphide, Silicon Photonics	
VOOLL	 EML CW Laser with Silicon Photonics modulator DFB-MZ 	 Narrow linewidth lase IQ modulators Coherent mixer and photodiode array 	

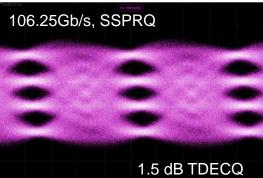
VCSEL: Vertical Cavity Surface-Emitting Laser

EML: Electro-Absorption Modulated Laser CW: Continuous Wave DFB-MZ: Distributed Feedback Laser with Mach-Zehnder Modulator IQ: In-Phase/Quadrature

TRENDS IN GaAs VCSELS FOR COMMUNICATIONS

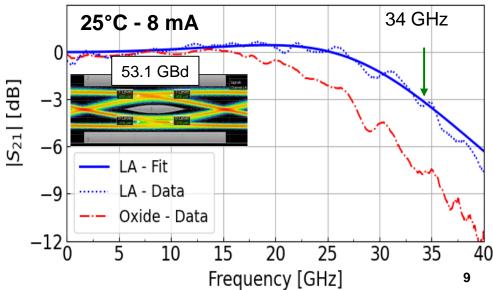
GaAs VCSELs

Still the lowest cost, lowest power solution for short reaches up to 50/100m


• 100G PAM-4 VCSELs are shipping in production


- 1x4 and 1x8 arrays support 400G and 800G transceivers
- Supporting Ethernet, Fibre Channel, Infiniband, and proprietary links such as NVLink
- Key specifications: Bandwidth, crosstalk, RIN Noise

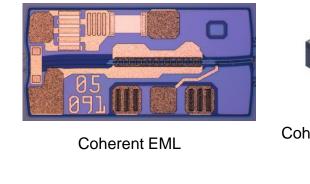
Path to 200G/lane VCSELs

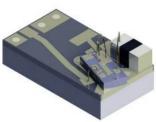

- >34GHz bandwidth lithographically defined aperture VCSEL was presented at OFC 2024
- Lithographic Aperture VCSELs Have the Potential to Achieve the Long Lifetimes Required by Datacom Applications and well controlled small apertures
- 200G PAM4 requires >40GHz bandwidth, which has not been demonstrated with a conventional VCSEL design, but can be supported by lithographically defined VCSEL

VCSEL Technologies Compared 4 µm apertures

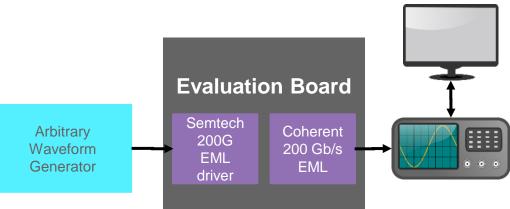
LASER TECHNOLOGIES FOR DATACOM AND TELECOM

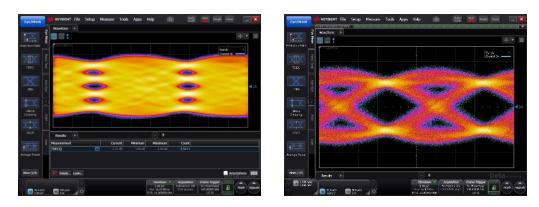
Datacom Short-Reach < 100 m	Datacom Mid- and Long-Reach 500 m to 10 km	Telecom 10 km ++ Coherent optics, multiple modulation formats (QPSK, QAM) Indium Phosphide, Silicon Photonics		
8x100G for 800G 16x100G for 1.6T 8x200G for 1.6T	8x100G for 800G 4x200G for 800G 8x200G for 1.6T			
Gallium Arsenide	Indium Phosphide, Silicon Photonics			
VUSEL	EML CW Laser with Silicon Photonics modulator DFB-MZ	 Narrow linewidth laser IQ modulators Coherent mixer and photodiode array 		


VCSEL: Vertical Cavity Surface-Emitting Laser EML: Electro-Absorption Modulated Laser CW: Continuous Wave DFB-MZ: Distributed Feedback Laser with Mach-Zehnder Modulator IQ: In-Phase/Quadrature

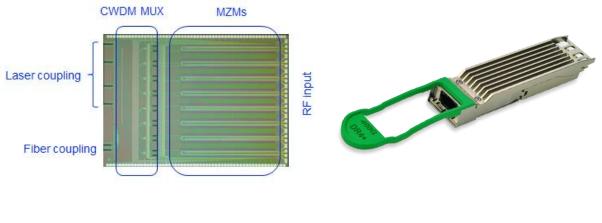

EMLs: 100 GB/S AND 200 Gb/s TRANSMISSION

- InP Electro-Absorption Modulated Lasers (EMLs) are used for 100G/lane today
 - High EO BW
 - Compact size
 - InP has better electro-optic performance than SiP
 - Mature platform

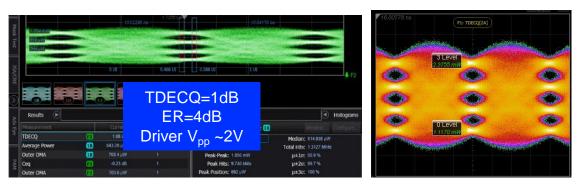

Demonstration of 200G/lane


- Monolithically integrated O-band DFB laser and an electro-absorption modulator
- Supporting 112 GBd PAM4 modulation
- Optical power 7 dBm, ER 5 dB, low noise 147 dB/Hz
- Compatible with cost-effective non-hermetic packaging
- Integrated on-chip RF termination for improved signal integrity

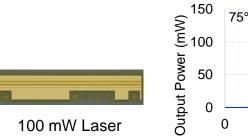
Coherent EML on CoC

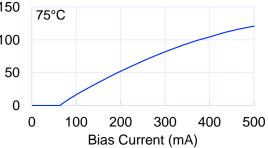


200G PAM4 Optical Eye 100G NRZ

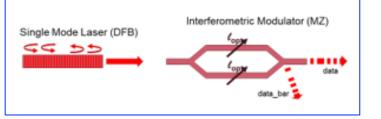

SILICON PHOTONICS FOR 100G/LANE AND 200G/LANE

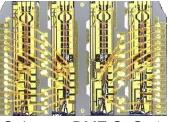
Silicon Photonics


- Silicon photonics can reduce module cost and complexity by fewer lasers and integration of passives
- New platform
- Architecture for each module determined based on detailed specs for application
- >50GHz Silicon Mach Zehnder Modulators and Ge-based photodiodes demonstrated
 - 800G 2xFR4, TDECQ 1 dB based on Si MZM
- Demonstration of 200G/lane
 - 224 Gb/s PAM4 eyes demonstrated, <1 dB TDECQ
 - SiPh requires high power InP CW laser
 - 100 mW uncooled and 200 mW cooled
 - 1310nm for DR4 and DR8, CWDM4 for FR4 and 2xFR4

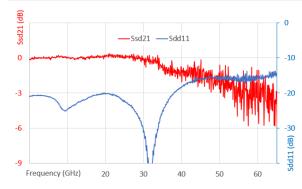


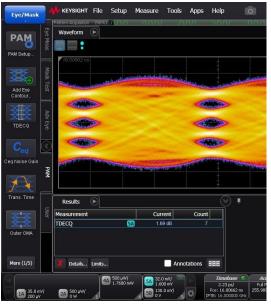
Silicon Photonics IC


Modulation diagram from 800G 2xFR4 transmitter 224 Gb/s PAM4 optical eye



200Gb/s DFB-MZ A HIGH PERFORMANCE ALTERNATIVE TO EML



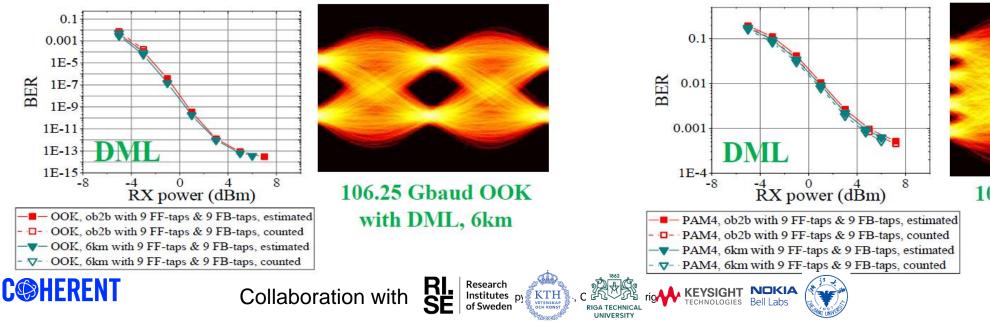


Coherent DMZ CoC, 4ch

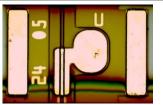
InP CW Laser with Integrated Mach-Zehnder Modulator

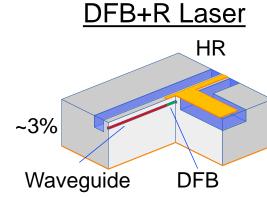
- Differential drive is used for superior signal integrity and reduced cross-talk
- Uncooled operation enabled
- Linear performance is a great fit for Linear Pluggable Optics (LPO)
- Channel-specific positive and negative chirp control for dispersion management
- Supports 800G and 1.6T at 10 km
 - Cooled LAN-WDM for 10 km, uncooled CWDM for shorter links
- Demonstrated 200Gbps performance
 - High performance: 8.5 dBm output power, 7 dB OMA, -147 dB/Hz noise, low TDECQ
 - Live demo of DFB-MZ over 6 km optical fiber and 800G FR4 OSFP over 3 km fiber at ECOC 2023

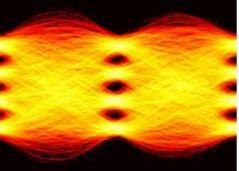
Live demo of 800G FR4 OSFP with DFB-MZ at ECOC 2023: 200G PAM4 Optical Eye ¹³



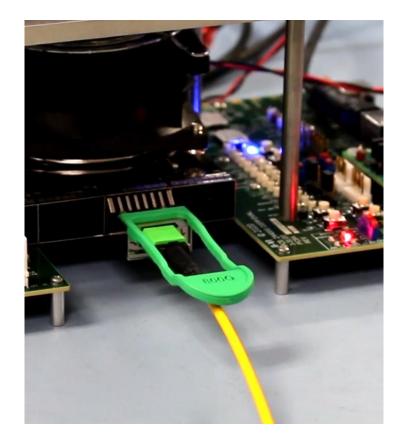
HOW FAR CAN WE PUSH DIRECTLY-MODULATED INP LASERS?


- InP Directly Modulated Laser (DML) is low cost and low power for <10 km
 - 100Gb/s PAM4 for DR4, DR8, and FR4 demonstrated, can be operated uncooled
 - 50Gb/s NRZ with high output power for 50G PON
- Demonstrated 106.25 G NRZ and 212G PAM4 over 6 km with DFB+R Laser
 - DFB+R laser is a DFB laser with passive waveguide and 3% front facet coating, creating strong etalon ripples that excite Photon-Photon Resonance effect
 - Demonstrated 75 GHz bandwidth at 25°C and 62 GHz at 50°C
 - 6km transmission demonstrated at 106G NRZ and 212G PAM4 with simple Rx (9 FF, 9 FB taps)


106.25 Gbaud PAM4, 6km


106.25 Gbaud OOK, 6km

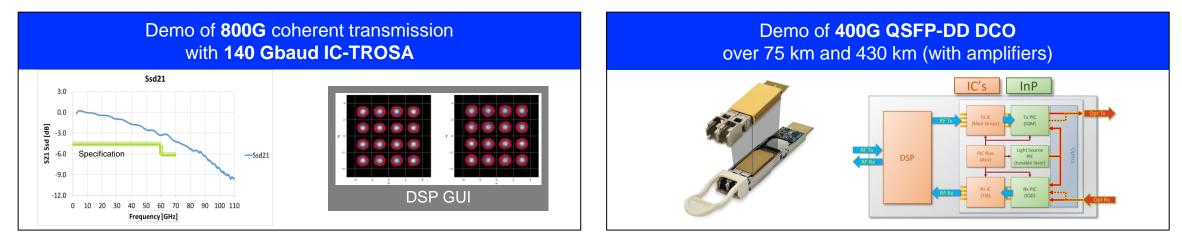
100Gb/s PAM4 laser



106.25 Gbaud PAM4 with DML, 6km

INTEROPERATION BETWEEN SILICON PHOTONICS-BASED 800G DR8 AND EML-BASED 800G DR8

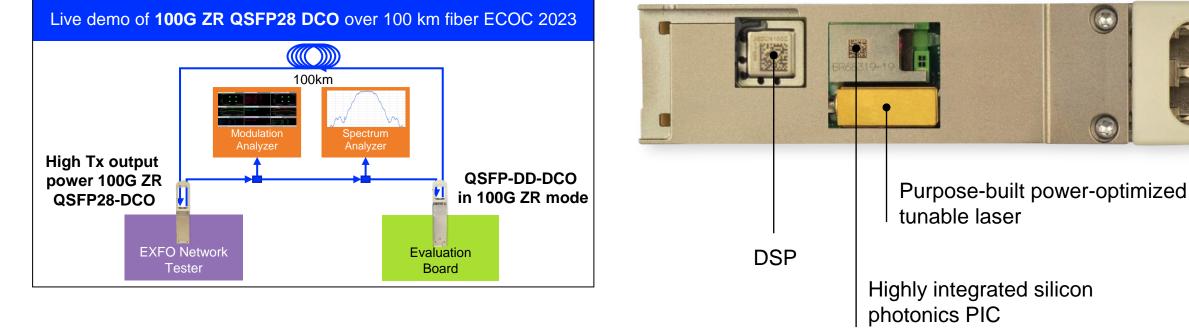
- Interoperation between modules using different modulator technologies is critical for system operation
- Interoperation between EML-based DR8 and SiPh-based DR8 has been demonstrated over 2 km SMF
 - Silicon Photonics-based QSFP-DD DR8
 - Highly integrated Silicon Photonics chip
 - Coherent CW laser
 - EML-based OSFP DR8
 - Coherent EML and photodetector
 - Modules with both technologies are intended for deployments of the 800G at datacenters enabled by 25T and 50T switches


LASER TECHNOLOGIES FOR DATACOM AND TELECOM

Datacom Short-Reach < 100 m	Datacom Mid- and Long-Reach 500 m to 10 km	Telecom 10 km ++	
8x100G for 800G 16x100G for 1.6T 8x200G for 1.6T	8x100G for 800G 4x200G for 800G 8x200G for 1.6T	Coherent optics, multiple modulation formats (QPSK, QAM)	
Gallium Arsenide VCSEL	Indium Phosphide, Silicon Photonics	Indium Phosphide, Silicon Photonics	
	EML CW Laser with Silicon Photonics modulator DFB-MZ	Narrow linewidth laser IQ modulators Coherent mixer and photodiode array	

VCSEL: Vertical Cavity Surface-Emitting Laser EML: Electro-Absorption Modulated Laser CW: Continuous Wave DFB-MZ: Distributed Feedback Laser with Mach-Zehnder Modulato IQ: In-Phase/Quadrature

InP PHOTONIC INTEGRATED CIRCUITS (PICs) FOR COHERENT OPTICS TRANSCEIVERS


- InP PIC has best electro-optic performance, good fit for coherent transceivers
 - Especially for high optical output power, long reach such as 400G and 800G Metro and Long-Haul
- Integrated InP PICs demonstrated:
 - Wavelength-tunable narrow-linewidth laser, semiconductor optical amplifiers, IQ modulators, coherent mixer, photodiode array.
- Advantages of InP
 - Bandwidth to support >128 Gbaud modulation
 - Low insertion loss and low drive voltage yield lower power dissipation
 - Integrated semiconductor optical amplifiers deliver high Tx output power (0dBm)
 - InP dual polarization coherent mixer and photodiode array provide higher bandwidth, improved Rx sensitivity

SILICON PHOTONICS FOR COHERENT OPTICS TRANSCEIVERS

- Silicon Photonics provides low-cost integration of passives
- For applications where electro-optic performance is sufficient, silicon photonics can enable a lower cost and more compact module such as Coherent's 100GZR QSFP28 DCO
- Requires low linewidth InP tunable laser

100ZR QSFP28 DC0

BEYOND 200GBSP NEW MODULATOR TECHNOLOGIES

MATERIALS FOR HIGH BANDWIDTH MODULATORS

- LNO (Lithium Niobate)
 - Utilizes the electro-optic effect in lithium niobate crystals to modulate light, known for high optical quality and broad transparency range; uses Pockels effect for refractive index variation
- BTO (Barium Titanate)
 - Employs barium titanate to modulate light, offering strong electro-optic effects; high efficiency Pockels effect
- InP (Indium Phosphide)
 - Based on semiconductor indium phosphide, efficient at absorbing and emitting light and allows integration of electronic and optical components; supports both EAM and MZM
- SiP (Silicon Photonics)
 - Uses the electro-optic properties of silicon within photonic circuits, compatible with silicon-based electronics manufacturing processes; free-carrier plasma dispersion effect used instead for refractive index variation
- SOH (Silicon-Organic Hybrid)
 - Combines silicon structures with organic electro-optic materials to enhance modulation efficiency
- POH (Plasmonic-Organic Hybrid)
 - Integrates plasmonic structures with organic materials to achieve high-speed light modulation at very small scales

HIGHER BANDWIDTHS MODULATOR TECHNOLOGIES

- Multiple materials support high bandwidth EO modulators
- Other important parameters to consider
 - Loss, form factor and efficiency (Vπ*L), energy consumption, reliability, compatibility with silicon/InP fab, maturity

Modulator Material	Modulator Type	Reported BW	Band	Data rate/ Lambda	Voltage	Reference
TFLN	MZM	110 GHz	0	128GBd	Sub-1 Vpp	1
InP	MZM IQ	100 GHz	С	192GBd	1.1Vppd	2
BTO	MZM	110 GHz	С	256GBd	1.9V	3
SOH	MZM	-	0	192GBd	0.92V	4
Silicon	Microring	67 GHz	С	100Gbd	0.8	5
Silicon	Slow light modulator	110GHz	С	-	4V	6
POH	MZM, IQ	500GHz	С	256GBd	0.8V	7

[1] St-Arnault, Charles et al. (2024). Net 1.6 Tbps (4×400Gbps/λ) O-Band IM/DD Transmission Over 2 km Using Uncooled DFB Lasers on the LAN-WDM grid and Sub-1V Drive TFLN Modulators. Th4C.6. 10.1364/OFC.2024.Th4C.6.

[2] H. Wakita et al. "100-GHz-bandwidth InP-based On-board Coherent Tx Front-end enabling 2-Tb/s/λ Optical Transmission," in Optical Fiber Communication Conference (OFC) 2024, Technical Digest Series (Optica Publishing Group, 2024), paper Th4C.2.

[3] Kohli, Manuel et al. (2024). 256 GBd Barium-Titanate-on-SiN Mach-Zehnder Modulator. M3K.5. 10.1364/OFC.2024.M3K.5.

[4] A. Schwarzenberger et al. "O-Band SOH Mach-Zehnder Modulator Operating at a PAM4 Line Rate of 384 Gbit/s with Sub-Volt Drive Voltage," in Optical Fiber Communication Conference (OFC) 2024, Technical Digest Series (Optica Publishing Group, 2024), paper Th4B.6

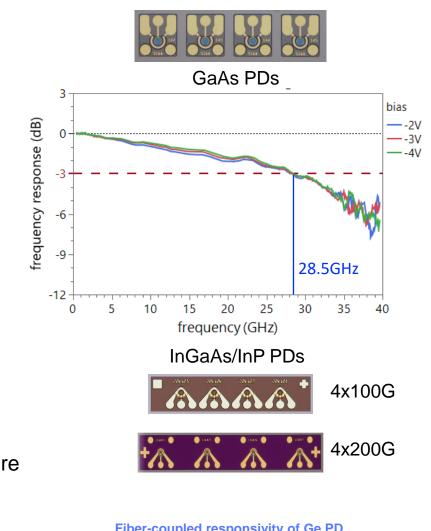
[5] Zhang et al. "200 Gbit/s Optical PAM4 Modulation Based on Silicon Microring Modulator." 2020 European Conference on Optical Communications (ECOC) (2020): 1-4.

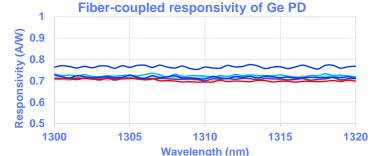
[6] C. Han et al. "Ultra-compact silicon modulator with 110 GHz bandwidth," in *Optical Fiber Communication Conference (OFC) 2022*, S. Matsuo, D. Plant, J. Shan Wey, C. Fludger, R. Ryf, and D. Simeonidou, eds., Technical Digest Series (Optica Publishing Group, 2022), paper Th4C.5.

[7] 22. M. Burla et al. "500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics," APL Photonics 4(5), 056106 (2019).

PHOTODIODES FOR 100G/LANE AND 200G/LANE

GaAs PDs

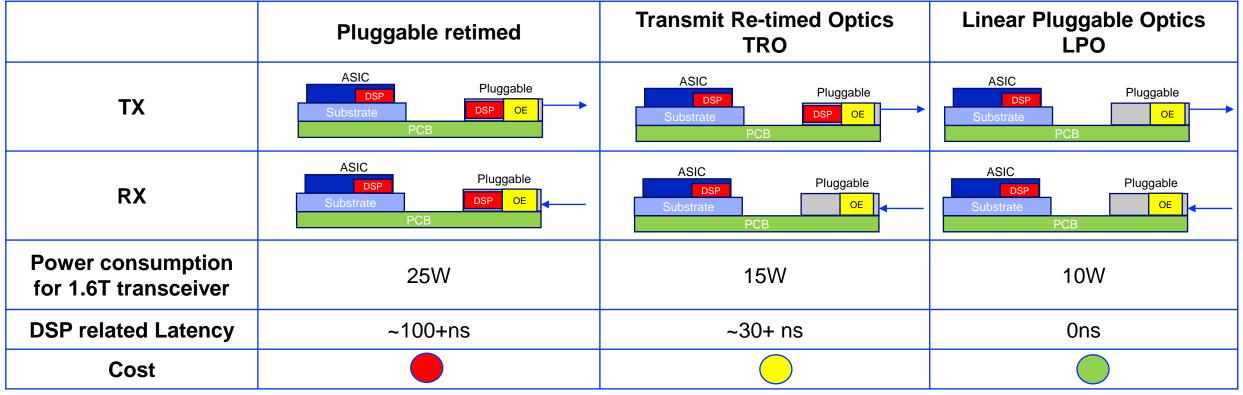

- >28 GHz bandwidth at -2V with 32µm aperture diameter for 56GBd data transmission
- High responsivity of 0.6 A/W; very low dark current of 3 pA


InGaAs/InP PDs

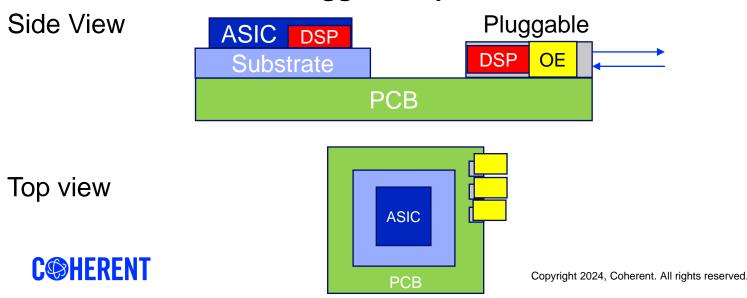
- 100 Gb/s PAM4 PIN PD in high-volume production
 - Responsivity at 1310 nm > 0.8 A/W, capacitance < 80 fF
- 200 Gb/s PAM4 PIN PD in sampling stage
 - Back-illuminated flip-chip bonded photodiode with effective optical aperture diameter of 20 μm
 - Responsivity at 1310 nm > 0.66 A/W, capacitance < 50 fF, -3dB BW > 50 GHz

Ge-based PDs in Silicon Photonics

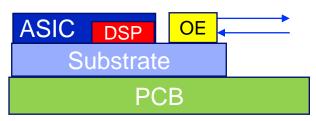
0.7 A/W demonstrated

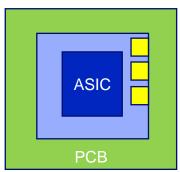


CONSIDERED ARCHITECTURES

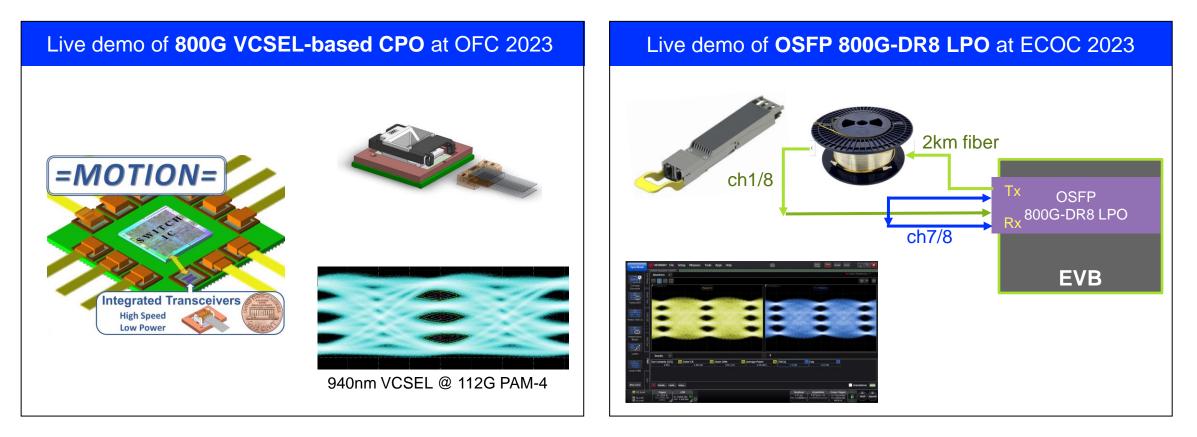

NEAR TERM TRANSCEIVER CONFIGURATION TRENDS TRANSMIT RE-TIMED OPTICS (TRO) AND LINEAR PLUGGABLE OPTICS (LPO)

- New configurations driven by higher energy efficiency requirements
- TRO and LPO remove retiming to decrease overall system power consumption, latency, cost
- Removing retiming puts high linearity requirements on optics


LONG TERM CONFIGURATION TRENDS CO-PACKAGED OPTICS (CPO)


- Pluggable module gets replaced by "chiplets" surrounding host ASIC
- CPO helps to further reduce the power consumption and latency
 - Designed to connect terabits per second (Tbps) data among GPU/CPU/memory ASICs
 - Overcomes the distance limitations of copper wires, which are typically effective for 100-200Gbps lane rates
 - Limited by heat and energy constraints within the package, restricting optical interconnect distance
 - · CPO architecture has very high reliability requirements due to the more difficult serviceability

Pluggable Optics


Co-Packaged Optics

EXTENDIBILITY TO LINEAR, HALF-LINEAR, NEAR AND CO-PACKAGED OPTICS

- LPO, TRO, and CPO are packaging and architectural partitioning changes, as compared to traditional retimed pluggable optics
- Optical components in the packages are largely the same

BENEFITS PICS FOR COMMUNICATION APPLICATIONS

- High Bandwidth
 - Supports high data rates necessary for modern communication systems
- Compact Size
 - Integration of multiple optical components into a single chip reduces size and space requirements
- Energy Efficiency
 - Lower power consumption compared to discrete optical components
- High Reliability
 - Fewer connections and interfaces lead to increased reliability and reduced failure rates
- Cost Efficiency
 - Potential for mass production using semiconductor fabrication techniques lowers overall cost
- Scalability
 - Easier to scale up for higher performance and capacity by integrating more functions on a single chip.

CHALLENGES PICS FOR COMMUNICATION APPLICATIONS

- Fabrication:
 - Precision required in manufacturing to maintain performance and yield
 - Need for advanced fabrication facilities and processes
- Integration:
 - Combining various optical functions and materials on a single chip
 - Ensuring compatibility and optimal performance of integrated components
- Manufacturability:
 - Developing cost-effective manufacturing processes for large-scale production
 - Addressing variability and defects in the manufacturing process
- Thermal Management:
 - Managing heat dissipation in densely packed PICs
- Packaging:
 - Protecting the delicate components while maintaining performance
 - Ensuring efficient optical and electrical connections

COHERENT

INNOVATIONS THAT RESONATE