
© 2022 IBM Corporation

Folkert Horst, Elger Vlieg, Bert Jan Offrein

PICs for enabling neuromorphic computing

Neuromorphic Devices and Systems Group

IBM Research Europe - Zurich, 8803 Rüschlikon, Switzerland



Copyright © 2024

Outline

▪ Neuromorphic computing

▪ Integrated-optic neuromorphic computing concepts

▪ Discussion
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Experiment: “Human Brain vs. Computer”

Task 1: Mathematics

2= ?

Task 2: Image recognition

Traditional silicon scaling ended

New types of problems gain interest

Explore new functionalities, More than Moore

Explore new computing paradigms
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Neuromorphic Computing – ?

Ethymological: 

Neuromorphic computing is a brain-inspired signal processing 

technology that tries to mimic the neuro-biological architecture

of the brain and its functions.

As interdisciplinary technology, it involves

◼ biological, 

◼ physical, 

◼ mathematical,

◼ computer science, 

◼ and electronic engineering concepts

   to design and realize new artificial neural network systems. 

“neuro”  related to nerves or nervous system 

“morphic”  having form or structure of…

Definition: 

  http://www.web3.lu/category

       /science-philosophy/
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Brain inspired computing:

▪ Feed-forward sequential processing

▪ Information encoded in signal amplitude 

▪ Neuron activation: Accumulate + Threshold 

▪ Training: Backpropagation Algorithm

Deep Artificial Neural Network:Brain-like Neural network:

Simplify

“Cat”

“Dog”

“Mouse”

▪ Omni-directional signal flow

▪ A-synchronous pulse signals

▪ Information encoded in signal timing

➔ Difficult to implement efficiently on 
standard computer hardware

Information processing flow

“Mouse”

“Dog”

“Cat”
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Signal processing in neuromorphic computing

Synaptic function: Multiply accumulate → Vector matrix multiplication → O(N2)

Neuron: Nonlinear activation → O(N)

“Mouse”

“Dog”

“Cat”

Artificial deep neural network
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The neural network size explosion

▪ Source: NVIDIA

E. Strubell et al.,  arXiv:1906.02243
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The computing hardware
Transistors Logic & SRAM Circuits Memory & Storage
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Digital signal processing

▪ The Von Neumann architecture
– Memory for programs and data, a bus for memory access, an arithmetic unit & a program control 

unit
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Let’s have a closer look at the processing steps

Processing Unit Local memory Main memory

Coeff.

Data Data

Result Result

Coeff.

Intermediate

Result
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Let’s have a closer look at the processing steps

Processing Unit Local memory Main memory

Coeff.

Data Data

Result Result

Coeff.

nJ

nJ

nJ

pJ

pJ

pJ

0.01 – 1 pJ

Intermediate

Result

pJ
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Analog signal processing for scalability

▪ Limiting factors
▪ Memory access

▪ Sequential operations

▪ Digital signal processing

12

▪Overcome by
▪ In-memory computing

▪ Parallel operations

▪ Analog signal processing

Processing 
Unit

Compute effort ~O(#Neurons2) Compute effort ~O(1)

Electrical and optical solutions are viable candidates
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Analog signal processing systems

▪ Electrical ▪ Integrated photonics

▪ Various device concepts and materials
– Crossbar

– Mach-Zehnder interferometer

– Diffractive

Ohm’s and Kirchhoff’s law

From: Y. Shen et al., doi: 

10.1038/nphoton.2017.93.

From: F. Horst, IBM.From: EU PHOENICS (U Oxford).

Attenuation, interference, diffraction

▪ Memristive devices in a crossbar
– PCM

– OxRAM

– FERAM

For inference & training
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• Equal signal distribution along columns 

• Equal signal accumulation along rows

• One tunable attenuator per intersection/coefficient: 
• N2 heaters
• Simple control

• However: Power loss (factor 1/N) in the directional 
couplers for signal accumulation along the output rows:
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Crossbar with tunable attenuators, incoherent light
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Crossbar with tunable attenuator: Hardware



Copyright © 2024

Synaptic interconnect, coherent light

𝑈

W.R. Clements et.al. , “Optimal design for universal multiport interferometers” 
http://dx.doi.org/10.1364/OPTICA.3.001460

Optical implementation of a unitary 
matrix multiplier:

• Control requires N*(N-1) heaters
• Complicated (sensitive?) tuning 

algorithm

http://dx.doi.org/10.1364/OPTICA.3.001460
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Lattice filters for optical convolution processing

▪ A Finite Impulse Response filter performs a 
convolution on a discrete time series of input 
data

▪ Implementation in Silicon photonics:
– Tunable Mach-Zehnder Interferometers, as power 

splitter-combiners
– Folded waveguides as delay lines
– Thermo-optic phase shifters for control

Lattice form discrete time series FIR filter:

Silicon Photonics lattice filter:

In

Out

Source: Wikipedia
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Layout and setup

18

delay line

short path

Tunable coupler

I1

I2

O1

O2

metal waveguide 
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Optical convolutional signal processor

▪ Photonic implementations, volatile weights but well controlled and fast set

▪ Time domain operation

▪ High-speed signal processing (12.5 GSample/s)

▪ Fast and efficient reconfiguration (electro-optic modulators)

Measurements by Pascal Stark
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Lattice filter: Link and Power budget

Link and Power budget calculations:

▪  Scaling limits for the lattice filter:
– Stage loss
– Control complexity Photonic processor DetectorModulator

D
a
ta

 R
A

M

Laser

Driver

DAC

ADCTIA

Data RAM

Parameter Value Unit

CW laser launch power 13.0 dBm

Laser to chip coupling 0.2 dB

Modulator insertion loss 3 dB

Lattice filter loss: 9 stages @ 0.58 dB/stage 5.2 dB

Kernel normalization loss 2 dB

Detector coupling loss 0.2 dB

Optical power at photodetector 2.6 dBm

Power penalties (jitter, crosstalk, ISI etc.) 1.7 dB

Effective optical power at photodetector 0.9 dBm

Optical Sensitivity for a resolution of 4 bits, at 32 GSps -2.4 dBm

Available link margin 3.3 dB

Building Block Power in mW at 32 GSps:

Data RAM (read) 11

High Speed DAC 67

Driver and Modulator 70

Detector and TIA 6

Output ADC 115

Results RAM (write) 10

CW Laser 200

Sum of Power 476

Efficiency TOps/Watt 2.49

Link budget: Power budget:

▪ Comparable to existing digital hardware, but
– High-speed, low latency / Real time

– Can do complex data and kernels

– Room for further improvements 
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Analog signal processing for neural network training

21

Electrical crossbar Photonic crossbar

Ԧ𝑥

𝑊 Ԧ𝑥

Ԧ𝛿

𝑊𝑇 Ԧ𝛿

Forward propagation
Backward propagation
Weights

Ԧ𝑥

𝑊 Ԧ𝑥

𝑊𝑇 Ԧ𝛿

Ԧ𝛿

Writable photorefractive gratings provide the same functionality 
as the tunable resistive elements in a crossbar unit

• Electrical wires
• Local weights
• Resistance tuning

• Planar waveguiding
• Distributed weights
• Refractive index tuning

|  IBM Confidential  |  © 2018 IBM Corporation
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Optical crossbar arrays: Holographic storage and signal processing

Optical intensity

Charge separation

Electrical field

Refractive index

Position

Interference pattern: Stored diffraction grating:Photorefractive effect:

Weight Storage: 

Synaptic weights are stored as refractive index gratings in a photorefractive material:

▪ Grating are written by two interfering optical beams

▪ Photorefractive effect: Optically active electron traps + Pockels effect → refractive index grating

▪ Linear and symmetric process

Source 1

Destination 1

Photorefractive

crystal

W

 Cornelia Denz, Optical Neural Networks, 1998.
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Optical crossbar arrays: Integrated Solution

Concept demonstrated in bulk optics

▪ Backpropagation training of neural networks with 
hidden layers

▪ Large setup, slow electro-optics, stability issues

→: Miniaturize using Integrated Optics

▪ Electro-optic conversion and beam shaping optics 
on a silicon photonics chip

▪ Memory: Photorefractive thin film on silicon

 Yuri Owechko and Bernard H. Soffer, "Holographic neurocomputer 

utilizing laser diode light source“, 1995
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Photorefractive gratings in GaAs – Integrated photonic implementation

Photorefractive processor Simulated transmission

Δφ

50/50

Interaction 

region

Out

In

Beam shaping 

optics

Light path

Manufactured chip



Copyright © 2024

Periodic synapse writing

2
5
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Concept comparison

▪ Inference

▪ Incoherent

▪ Available

▪ ‘Simple’ control

▪ Inherent loss (1/N)

▪ Scalable to N≈20
– Loss limited

26

Photonic crossbar Interferometric Diffractive

▪ Inference

▪ Coherent

▪ Available

▪ ‘Complex’ control

▪ Lossless

▪ Scalable to N≈64
– Complexity limited

▪ Inference & training

▪ Coherent

▪ Partially available

▪ ‘Complex’ control

▪ Low loss

▪ Scalable to N≈256
– IO circuit limited

• Power-efficiency improves with N

• S/N determines the resolution and operating speed
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Power-efficiency and scalability

Doi: 10.1109/HPEC43674.2020.9286149
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Innovation required at all levels
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New technologies for Artificial Intelligence - The team

29
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