PICs for enabling neuromorphic computing

Folkert Horst, Elger Vlieg, Bert Jan Offrein

IBM Research Europe - Zurich, 8803 Rüschlikon, Switzerland

Neuromorphic Devices and Systems Group

Outline

- Neuromorphic computing
- Integrated-optic neuromorphic computing concepts
- Discussion

Experiment: "Human Brain vs. Computer"

Task 1: Mathematics

$\sqrt{2} = ?$

Traditional silicon scaling ended New types of problems gain interest

Explore new functionalities, More than Moore Explore new computing paradigms

Task 2: Image recognition

Ethymological:"neuro"⇔related to nerves or nervous system"morphic"⇔having form or structure of...

Definition: Neuromorphic computing is a **brain-inspired signal processing technology** that tries to **mimic** the **neuro-biological architecture** of the **brain and its functions.**

As interdisciplinary technology, it involves

- biological,
- physical,
- mathematical,
- computer science,
- and electronic engineering concepts
 - to design and realize new artificial neural network systems.

Brain inspired computing:

- Omni-directional signal flow
- A-synchronous pulse signals
- Information encoded in signal timing
- ➔ Difficult to implement efficiently on standard computer hardware

- Feed-forward sequential processing
- Information encoded in signal amplitude
- Neuron activation: Accumulate + Threshold
- Training: Backpropagation Algorithm

Signal processing in neuromorphic computing

Synaptic function: Multiply accumulate \rightarrow Vector matrix multiplication \rightarrow O(N²) **Neuron**: Nonlinear activation \rightarrow O(N)

The neural network size explosion

A data center

DEAN MOUHTAROPOULOS | GETTY; EDITED BY MIT TECHNOLOGY REVIEW

Artificial Intelligence / Machine Learning

Training a single AI model can emit as much carbon as five cars in their lifetimes

Deep learning has a terrible carbon footprint.

by Karen Hao

Jun 6, 2019

The artificial-intelligence industry is often compared to the oil industry: once

mined and refined, data, like oil, can be a highly lucrative commodity. Now it seems the metaphor may extend even further. Like its fossil-fuel counterpart, the process of deep learning has an outsize environmental impact.

E. Strubell et al., arXiv:1906.02243

The computing hardware

Copyright © 2024

Digital signal processing

- The Von Neumann architecture
 - Memory for programs and data, a bus for memory access, an arithmetic unit & a program control unit

Let's have a closer look at the processing steps

Let's have a closer look at the processing steps

Analog signal processing for scalability

Limiting factors

- Memory access
- Sequential operations
- Digital signal processing

Overcome by

- In-memory computing
- Parallel operations
- Analog signal processing

Compute effort ~O(#Neurons²)

Compute effort ~O(1)

Electrical and optical solutions are viable candidates

Analog signal processing systems

Electrical

Ohm's and Kirchhoff's law

- PCM
- OxRAM
- FERAM

Attenuation, interference, diffraction

- Various device concepts and materials
 - Crossbar
 - Mach-Zehnder interferometer
 - Diffractive

For inference & training

Crossbar with tunable attenuators, incoherent light

- Equal signal distribution along columns
- Equal signal accumulation along rows
- One tunable attenuator per intersection/coefficient:
 - N² heaters
 - Simple control
- **However:** Power loss (factor 1/N) in the directional couplers for signal accumulation along the output rows:

Crossbar with tunable attenuator: Hardware

Synaptic interconnect, coherent light

Optical implementation of a unitary matrix multiplier:

- Control requires N*(N-1) heaters
- Complicated (sensitive?) tuning algorithm

W.R. Clements et.al., "Optimal design for universal multiport interferometers" http://dx.doi.org/10.1364/OPTICA.3.001460

Lattice filters for optical convolution processing

- A Finite Impulse Response filter performs a convolution on a discrete time series of input data
- Implementation in Silicon photonics:
 - Tunable Mach-Zehnder Interferometers, as power splitter-combiners
 - Folded waveguides as delay lines
 - Thermo-optic phase shifters for control

Layout and setup

short path

Optical convolutional signal processor

Photonic implementations, volatile weights but well controlled and fast set

Measurements by Pascal Stark

- Time domain operation
- High-speed signal processing (12.5 GSample/s)
- Fast and efficient reconfiguration (electro-optic modulators)

Lattice filter: Link and Power budget

	۷	uв
Detector coupling loss	0.2	dB
Optical power at photodetector	2.6	dBm
Power penalties (jitter, crosstalk, ISI etc.)	1.7	dB
Effective optical power at photodetector	0.9	dBm
Optical Sensitivity for a resolution of 4 bits, at 32 GSps	-2.4	dBm
Available link margin	3.3	dB

Data RAM (read)	11
High Speed DAC	67
Driver and Modulator	70
Detector and TIA	6
Output ADC	115
Results RAM (write)	10
CW Laser	200
Sum of Power	476
Efficiency TOps/Watt	2.49

Comparable to existing digital hardware, but

- High-speed, low latency / Real time
- Can do complex data and kernels

- Room for further improvements

Analog signal processing for neural network training

Electrical crossbar

Photonic crossbar

as the tunable resistive elements in a crossbar unit

Optical crossbar arrays: Holographic storage and signal processing

Weight Storage:

Copyright © 2024

Synaptic weights are stored as refractive index gratings in a photorefractive material:

- Grating are written by two interfering optical beams
- Photorefractive effect: Optically active electron traps + Pockels effect → refractive index grating
- Linear and symmetric process

Optical crossbar arrays: Integrated Solution

Concept demonstrated in bulk optics

- Backpropagation training of neural networks with hidden layers
- Large setup, slow electro-optics, stability issues

Yuri Owechko and Bernard H. Soffer, "Holographic neurocomputer utilizing laser diode light source", 1995

→: Miniaturize using Integrated Optics

- Electro-optic conversion and beam shaping optics on a silicon photonics chip
- Memory: Photorefractive thin film on silicon

Photorefractive gratings in GaAs – Integrated photonic implementation

Photorefractive processor

Simulated transmission

Out Beam shaping optics Interaction region Light path

Manufactured chip

Periodic synapse writing

EOPM drive signal [V]

EOPM

1.5

2.0

Concept comparison

- Inference
- Incoherent
- Available
- 'Simple' control
- Inherent loss (1/N)
- Scalable to N≈20
 - Loss limited

- Inference
- Coherent
- Available
- 'Complex' control
- Lossless
- Scalable to N≈64

 Complexity limited

- Inference & training
- Coherent
- Partially available
- 'Complex' control
- Low loss
- Scalable to N≈256

 IO circuit limited

- Power-efficiency improves with N
- S/N determines the resolution and operating speed

Power-efficiency and scalability

Copyright © 2024

Innovation required at all levels

New Materials and Devices

Non *von Neumann* Architecture

New technologies for Artificial Intelligence - The team

Acknowledgments

IBM Research – Zurich, Switzerland Neuromorphic Devices and Systems team

The IBM BRNC cleanroom opteam

Co-funded by the European Union Horizon 2020 Programme and the Swiss National Secretariat for Education, Research and Innovation (SERI)

PHOTONICS²¹

Photonics A Key Enabling Technology for Europe

EU & CH-SERI PHOENICS, PHOENIX, PROMETHEUS

Thank you for your attention! OFB@zurich.ibm.com