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Outline

= Neuromorphic computing
= |ntegrated-optic neuromorphic computing concepts

= Discussion
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Experiment: “Human Brain vs. Computer”

Task 1: Mathematics Task 2: Image recognition

2=

Traditional silicon scaling ended Explore new functionalities, More than Moore
New types of problems gain interest Explore new computing paradigms
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Neuromorphic Computing — ?

http://www.web3.lu/category
- . /sci -phil hy/
Ethymological: “neuro” <« related to nerves or nervous system science-philosophy

“morphic” < having form or structure of...

Definition: Neuromorphic computing is a brain-inspired signal processing
technology that tries to mimic the neuro-biological architecture
of the brain and its functions.

As interdisciplinary technology, it involves
m biological,

m physical,

m mathematical,

m computer science,

m and electronic engineering concepts

to design and realize new artificial neural network systems.
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Brain inspired computing:

Brain-like Neural network:

: ::Z;:e:f:ns Deep Artificial Neural Network:
@ outout nodes | Information processing flow >
€ Synaptic weights > :
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i 1 2 in i
Simply 2B} Middenlagers  Jdayer:

= Omni-directional signal flow
= A-synchronous pulse signals
= Information encoded in signal timing

=» Difficult to implement efficiently on
standard computer hardware

= Feed-forward sequential processing
= Information encoded in signal amplitude
= Neuron activation: Accumulate + Threshold

= Training: Backpropagation Algorithm
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Signal processing in neuromorphic computing

Artificial deep neural network
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Synaptic function: Multiply accumulate = Vector matrix multiplication =2 O(N?)
Neuron: Nonlinear activation - O(N)
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The neural network size explosion

= Source: NVIDIA k MIT

Technology
1000 Review
’5 GPT-3 Megatro n_Tu ring DEAN MOUHTAROPQULOS | GETTY; EDITED BY MIT TECHNOLOGY REVIEW
% (175 B) NLG (5308) Artificial Intelligence / Machine Learning
100 . . .
= Training a single Al model
a Meg:;?;-w . — can emit as much carbon
Y 3 ] - ]
S (17.2B) as five carsin their
= PO\ T5 lifetimes
E ,/f ) ( b B) Deep learning has a terrible carbon footprint.
c
— 1 5 /7 GPT-2 by Karen Hao Jun6, 2019
@ . (1.5B)
N 7f
2 /I/‘ The artificial-intelligence industry is often compared to the oil industry: once
@ ,’ ¢ ” B E RT— La rge mined and refined, data, like oil, can be a highly lucrative commodity. Now it
-8 s / (3 40 M ) seems the metaphor may extend even further. Like its fossil-fuel counterpart,
O . 1 .( the process of deep learning has an outsize environmental impact.
=
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The computing hardware

bitline bitline

: L BO e e ————————
Voltage‘ Vv W|r|ng AN B1 % & $ ! ! ! ! A0 e _I:'_l_ —I:l—l_

<w — T LT

YO X3 X2 X0 -

l n* X
" Lsource J ; TL drain ) f‘ 4""“""3’3’3“9" Cout S3 S2 S1 SO
; B2
. D |[ !A3 !AZ !Al !AO
. ffe
X5 R XL X0 Buffers Sense Amplifiers W
i }7_3“" 4-bit binary adder Cout S3 52 S1 SO T T T
i !A3 !AZ !AI!AO B P P P P P PR E : ; ;
1 vo X3 X2 XI X0 I i e IR L P i i i L U
e O O i ~T TR
4-bit binary adder Cout S3 S2 S1 SO o
VDD O = a1 i Can o
() =
I:||.— —q \T_‘ P7 P6 P5 P4 P3 P2 P1 PO z e
o =
& i ~
I:| |£IVR ]
GND BR

Copyright © 2024



Digital signal processing

= The Von Neumann architecture
— Memory for programs and data, a bus for memory access, an arithmetic unit & a program control
unit

Processing Memory
Unit

T

Tl
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Let's have a closer look at the processing steps

Processing Unit
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Let's have a closer look at the processing steps

Processing Unit
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Analog signal processing for scalability

= Limiting factors = Overcome by

= Memory access = In-memory computing
= Sequential operations » = Parallel operations

= Digital signal processing - Analog signal processing

Voltage V4

Processing Memory

Unit I
weight

Compute effort ~O(#Neurons?) Compute effort ~O(1)

Voltage V,

Electrical and optical solutions are viable candidates

12
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Analog signal processing systems

= |ntegrated photonics

Top view of SOI slab

= Electrical

wrl o

Voltage V,

Voltage V,

et
e

From: F. Horst, IBM.

Voltage Vy

Synaptic Tunable

weight resistance
From: Y. Shen et al., doi:

10.1038/nphoton.2017.93.
Attenuation, interference, diffraction

From: EU PHOENICS (U Oxford).

Ohm’s and Kirchhoff’s law

= Memristive devices in a crossbar = Various device concepts and materials

— PCM — Crossbar
— OXxRAM — Mach-Zehnder interferometer
— Diffractive

- FERAM
For inference & training

(1)
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Crossbar with tunable attenuators, incoherent light

Equal signal distribution along columns

Equal signal accumulation along rows

One tunable attenuator per intersection/coefficient:
* NZ?heaters

e Simple control

However: Power loss (factor 1/N) in the directional

couplers for signal accumulation along the output rows:
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Crossbar with tunable attenuator: Hardware
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Synaptic interconnect, coherent light

Optical implementation of a unitary
matrix multiplier: — -

* Control requires N*(N-1) heaters — —
 Complicated (sensitive?) tuning
algorithm

(4]
x - so::so

W.R. Clements et.al. , “Optimal design for universal multiport interferometers”
http://dx.doi.org/10.1364/0OPTICA.3.001460

Hypeet

[ty

g
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http://dx.doi.org/10.1364/OPTICA.3.001460

Lattice filters for optical convolution processing

= A Finite ImPUIse Response filter performs d Lattice form discrete time series FIR filter:
convolution on a discrete time series of input
data

Xn_

= Implementation in Silicon photonics: /
— Tunable Mach-Zehnder Interferometers, as power

splitter-combiners /
— Folded waveguides as delay lines

— Thermo-optic phase shifters for control

Silicon Photonics lattice filter: Out
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Layout and setup short path

I metal 0 waveguide Tunable coupler delay line
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Optical convolutional signal processor

= Photonic implementations, volatile weights but well controlled and fast set
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= Time domain operation
= High-speed signal processing (12.5 GSample/s)

= Fast and efficient reconfiguration (electro-optic modulators)
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Measurements by Pascal Stark
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Lattice filter: Link and Power budget

Link and Power budget calculations:

= Scaling limits for the lattice filter:
— Stage loss
— Control complexity Laser

Link budget:

Data RAM

Driver

—  Modulator

Parameter | Value Unit_

CW laser launch power

Laser to chip coupling

Modulator insertion loss

Lattice filter loss: 9 stages @ 0.58 dB/stage
Kernel normalization loss

Detector coupling loss

Optical power at photodetector

Power penalties (jitter, crosstalk, ISI etc.)
Effective optical power at photodetector
Optical Sensitivity for a resolution of 4 bits, at 32 GSps
Available link margin

13.0
0.2
3
5.2
2
0.2
2.6
1.7
0.9
-2.4
3.3

dBm
dB
dB
dB
dB
dB
dBm
dB
dBm
dBm
dB

—— Photonic processor =— Detector —{TIA \ADC —

Data RAM

Power budget:

Building Block Power in mW at 32 GSps:

Data RAM (read)

High Speed DAC 67
Driver and Modulator 70
Detector and TIA 6
Output ADC 115
Results RAM (write) 10
CW Laser 200
Sum of Power 476
Efficiency TOps/Watt 2.49

= Comparable to existing digital hardware, but
— High-speed, low latency / Real time
— Can do complex data and kernels
— Room for further improvements
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Analog signal processing for neural network training

Electrical crossbar Photonic crossbar
5) Forward propagation 53
Backward propagation
1 1 1 Weights \'1‘[
— % =
% — = WT§ %= = WT§
— i =
Wl AL
WD_C) e Electrical wires WJZ') « Planar waveguiding

« Distributed weights

Local weights
« Refractive index tuning

Resistance tuning

Writable photorefractive gratings provide the same functionality
as the tunable resistive elements in a crossbar unit
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Optical crossbar alrayS. Holographic storage and signal processing

Weight Storage:

Interference pattern: Photorefractive effect: Stored diffraction grating:

:

~ : ‘ Optical intensity
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=

(L) Cornelia Denz, Optical Neural Networks, 1998.
Synaptic weights are stored as refractive index gratings in a photorefractive material:

= Grating are written by two interfering optical beams

= Photorefractive effect: Optically active electron traps + Pockels effect = refractive index grating

= Linear and symmetric process
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Optical crossbar arrays: Integrated Solution

Concept demonstrated in bulk optics

= Backpropagation training of neural networks with
hidden layers

= Large setup, slow electro-optics, stability issues
Laser Diode-Based

plical Neural Networ yesate
Optical Neural Network devegration

(2' x 2' Optical Breadboard)

C Yuri Owechko and Bernard H. Soffer, "Holographic neurocomputer
utilizing laser diode light source®, 1995

—: Miniaturize using Integrated Optics

= Electro-optic conversion and beam shaping optics
on a silicon photonics chip

= Memory: Photorefractive thin film on silicon
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Electrical

| Output
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Photorefractive gratings in GaAs — Integrated photonic implementation

Photorefractive processor Simulated transmission Manufactured chip

Out

Beam shaping
optics

Interaction
region
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Periodic synapse writing

Photorefractive two-wave mixing (PIC)
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Concept comparison

Photonic crossbar Interferometric Diffractive

wrl o

= Inference = Inference = Inference & training
= Incoherent = Coherent = Coherent

= Available = Available = Partially available
= ‘Simple’ control = ‘Complex’ control = ‘Complex’ control
= Inherent loss (1/N) = Lossless = Low loss

= Scalable to N=20 = Scalable to N=64 = Scalable to N=256
— Loss limited — Complexity limited — 10 circuit limited

» Power-efficiency improves with N i

* S/N determines the resolution and operating speed H{“;;i
i ‘ii
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Power-efficiency and scalability
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Innovation required at all levels

daf mp_strinput_sumvector(ListdfDaputs, InputStrisg):
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New technologies for Artificial Intelligence - The team

=711 gaw - oy

SXIRAIE=TT i
F‘la\? Q dal

29 Copyright © 2024



Acknowledgments

IBM Research — Zurich, Switzerland PHOTONICS®"
Neuromorphic Devices and Systems team Photonics
A Key Enabling Technology
for Europe
The IBM BRNC cleanroom opteam
EU & CH-SERI
Co-funded by the European Union Horizon 2020 PHOENICS, PHOENIX,
PROMETHEUS

Programme and the Swiss National Secretariat for
Education, Research and Innovation (SERI)

Thank you for your attention!
OFB@zurich.ibm.com

Copyright © 2024



	Slide 1: PICs for enabling neuromorphic computing
	Slide 2: Outline
	Slide 3: Experiment: “Human Brain vs. Computer”
	Slide 4
	Slide 5: Brain inspired computing:
	Slide 6: Signal processing in neuromorphic computing
	Slide 7: The neural network size explosion
	Slide 8: The computing hardware
	Slide 9: Digital signal processing
	Slide 10: Let’s have a closer look at the processing steps
	Slide 11: Let’s have a closer look at the processing steps
	Slide 12: Analog signal processing for scalability
	Slide 13: Analog signal processing systems
	Slide 14: Crossbar with tunable attenuators, incoherent light
	Slide 15: Crossbar with tunable attenuator: Hardware
	Slide 16: Synaptic interconnect, coherent light
	Slide 17: Lattice filters for optical convolution processing
	Slide 18: Layout and setup
	Slide 19: Optical convolutional signal processor
	Slide 20: Lattice filter: Link and Power budget
	Slide 21: Analog signal processing for neural network training
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Periodic synapse writing
	Slide 26: Concept comparison
	Slide 27: Power-efficiency and scalability
	Slide 28: Innovation required at all levels
	Slide 29: New technologies for Artificial Intelligence - The team
	Slide 30: Acknowledgments

