

Femtosecond Laser-Induced Selective Etching of Transparent Materials: From Glasses to Crystals

Dr. Agnė Butkutė-Eidietė

2024-06-13 agne.butkute@femtika.com www.femtika.com

Microoptics and photonics

Through glass vias (TGV)

Microfluidics/ Lab-on-chip

Nozzles

Micromechanics

Microfluidics/ Lab-on-chip

Selective Laser Etching (SLE)

Nanogratings

- Arbitrary 3D shapes from glass
- Surface roughness down to 200 nm
- Internal channels fabrication
- Possibilities for large structures (~cm)

1 mm

- Selectivity is the ratio between etching speed of modified and unmodified material.
- This parameter limits the highest aspect ratio of a feature that can be fabricated.

$$Selectivity = \frac{L_{modified}}{L_{unmodified}}$$

	Etching rate	Selectivity	Aspect Ratio
Fused silica glass	200 - 900 µm/h	up to 3000	up to 1000
Borosilicate glass	150 - 650 µm/h	up to 200	up to 100
Alkali-free boro- alumino-silicate glass	15 - 40 µm/h	up to 80	up to 40
Crystalline sapphire	50 – 200 µm/h	up to 70	Up to 40

Alkali-free boro-alumino-silicate glass

Crystalline Sapphire

Fused silica glass

Laser Nanofactory systems

- Amplified femtosecond laser allows to combine additive and subtractive manufacturing
- Wide tunability enables efficient fabrication of micro-nano structures using huge range of materials (polymers, glasses, metals, ceramics, etc.)
- Stitching-error-free manufacturing over the entire working field
- Femtika's own software for the full control of related devices (both: manual and from user defined scripts)
- Add-ons (for instance, optical-fiber holders) and is customizable (as a versatile optical characterization setup)
- System is modular, can be adjusted under requirements and integrated into automatic production line

Summary

- SLE can be performed on many different glasses and crystals since nanogratings can be formed in these materials.
- $_{\odot}\,$ In general, SLE selectivity determines possible complexity of the structures.

Thank you!

agne.butkute@femtika.com www.femtika.com

Visit us at booth J95!

- o Founded in 2013
- o Based in Vilnius, Lithuania
- o Employees: 20 (3 PhD)
- Various R&D projects with EU partners (H2020, Eurostars)
- Member of Lithuanian Laser
 Association, EPIC, TOOLAS cluster

Laser Nanofactory system: main parameters

Femtosecond laser source

Wavelengths	1030 nm
	515 nm
Pulse duration	<250 fs - 10 ps
Pulse energy	>200 µJ
Max average power	10 W
Repetition rate	Single-shot - 2 MHz
Burst /BiBurst	GHz, MHz

Universal vacuum sample holder

Computer-controlled illumination Custom design to fit your samples Capability of more than 2 kg load Easily changeable plates for chucking the wafers

Nanopositioning

Total Travel (XY)	160 mm x 160 mm
Total Travel (Z)	60 mm
Accuracy	± 300 nm
Resolution	1 nm
Beam scanning	Galvanometer scanners

Stitching-error free fabrication

Beam power control

The optical modulator and motorized attenuator is used for beam power control

Integrated power meter enables real-time power monitoring